Article 250 is the largest article in the National Electrical Code. It is often the most dreaded by those new to the code, and sometimes even by those who have dealt with the code for years. Some of the terminology is confusing and conceptually difficult to follow. In keeping with the Combination Inspector emphasis of this series of articles, we will cover those items which I have previously taught to inspectors who weren’t electrical by trade. In doing so, we will not cover every section of Article 250, but concentrate on those that are used most commonly by multi-trade inspectors.
Two definitions

The scope of this article covers general requirements for grounding and bonding of electrical installations. First, we have two definitions that we need to consider in order to help us understand the principles of grounding. Effective grounded-fault current path is an intentionally constructed, low-impedance electrically conductive path designed and intended to carry current under ground-fault from the point of a ground fault on a wiring system to the electrical supply source and that facilitates the operation of the overcurrent protective device or ground-fault detectors on high impedance grounded systems. Ground-fault current path is an electrically conductive path from the point of a ground fault on a wiring system through normally non-current-carrying conductors, equipment, or the earth to the electrical supply source. Both of these are best understood as the emergency path the current takes in the event of a ground fault (which is a short from an ungrounded conductor to ground). If we have a good path, then the high current flow back to the source should operate the overcurrent device and shut down the system.

As you probably noticed, the main difference is that one is an intentionally constructed path, which is what we hope to have, and the second is any path in which the current may flow. To give a real life example of this, I remember getting a service call to a house which had smoke coming out of the walls. As luck would have it, I was very close and beat the fire department to the site. The first thing I did was shut off the main at the service and the smoke started to lessen. By the time the fire department got to the house, there was hardly any visible smoke coming out of the walls, just the smell of burning wood. The fire department broke open a hole in the wall and the plaster reinforcing wire lath had been burning its way into the wood studs, just like one of the old wood burning kits we used to have as kids. The only electrical device near this part of the dwelling was an air conditioner compressor unit. I opened the junction box of the unit and the grounding wire wasn’t connected. If it had been connected, there would have been a low impedance path that carried the current back to the breaker and caused it to open. However, one underground conductor had shorted out and the only path for the fault current was through the copper refrigeration lines to the wall where they contacted the metal lath wire and energized it, causing it to heat up to the point of burning the wood framing. Without a good fault-current path back to the over current device, the device just sees an additional load, but not enough to make it trip in a timely fashion.

Where grounding starts

Now that we understand why we need good grounding paths, let’s start back at Part III Grounding Electrode System and Grounding Electrode Conductor, since this is where grounding starts, with a good connection made to the earth. The connections to the earth are called electrodes, and the code describes eight different types of electrodes. We will only cover the concrete-encased electrodes and ground rods, since they are the ones most commonly used in construction today. Details are found in 250.52(A)(3) for the concrete-encased electrode. This is the preferred electrode for any new construction, and it performs very well due to the fact that the concrete continues to extract moisture from its surrounding soil and has great contact with the earth simply due to its weight.

The second most common is rod or pipe electrodes, which are covered in 250.52(A)(5). Ground rods are very common and make a good connection to the earth due to the fact they are required to be 8′ in length and reach deep enough into the earth. This is the best option when adding a grounding electrode system to a facility where you can’t incorporate a concrete-encased electrode.

There are other electrodes covered in 250.52 (which you should take time to read), but I will mention one that is fading from use, and that is metal underground water pipe. For decades, it was the most common source of grounding electrode; however, with the advances made in water system products, it was found that if a facility had a metal water line that failed, it was being replaced by a non-metallic system. When that occurred, we lost our grounding electrode. Even in new housing construction, I haven’t seen a metallic water pipe feeding a residence in two decades. If you review 250.53, you will find the installation methods for each of the grounding electrodes mentioned above.

One item to note is a change made in the 2011 edition of the NEC for 250.53(A)(1) related to rod electrode installations. In the 2008 NEC 250.56, it stated that a rod, pipe or plate electrode that didn’t measure 25 ohms or less would have to be supplemented by an additional electrode. In the field, this meant an inspector had to have some assurance that one device would measure 25 ohms or less, but how do you do that? Does the inspector test it? Generally no, so it was up to the contractor to prove it met this code requirement. In practice it saved time and multiple trips to the site if the contractor simply installed two rods and then didn’t have to worry about the measurement at all. So in the 2011 NEC250.53(A)(2), it states you will install two rod electrodes, and then there is an exception which allows one rod if you prove it meets the 25 ohms or less requirement. This is a good example of how the code is often modified to match what is actually the general practice in the field.


Call Now Button(610) 427-1984